Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 25;275(8):5918-26.
doi: 10.1074/jbc.275.8.5918.

Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity

Affiliations
Free article

Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity

P Xu et al. J Biol Chem. .
Free article

Abstract

Studies were initiated to address the basis for the low xanthine oxidoreductase (XOR) activity in humans relative to nonprimate mammalian species. The expression of the XOR in humans is strikingly lower than in mice, and both transcription rates and core promoter activity of the gene are repressed. Analysis of human XOR promoter activity in hepatocytes and vascular endothelial cells showed that the region from -258 to -1 contains both repressor and activator binding regions regulating core promoter activity. The region between -138 and -1 is necessary and sufficient for initiating, and the region between -258 and -228 is critical for restricting core promoter activity. Within the latter region, site-directed mutations identified a consensus sequence "acacaggtgtgg" (-242 to -230) that contains an E-box that binds a repressor. In addition, the TATA-like element is also required to restrict promoter activity and TFIID binds to this site. The results demonstrate that both an E-box and TATA-like element are required to restrict gene activity. A model is proposed to account for human XOR regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources