Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;11(1):4-25.
doi: 10.1177/10454411000110010301.

Regulation of calcium in salivary gland secretion

Affiliations
Review

Regulation of calcium in salivary gland secretion

I S Ambudkar. Crit Rev Oral Biol Med. 2000.

Abstract

Neurotransmitter-regulation of fluid secretion in the salivary glands is achieved by a coordinated sequence of intracellular signaling events, including the activation of membrane receptors, generation of the intracellular second messenger, inositol 1,4,5, trisphosphate, internal Ca2+ release, and Ca2+ influx. The resulting increase in cytosolic [Ca2+] ([Ca2+]i) regulates a number of ion transporters, e.g., Ca2+-activated K+ channel, Na+/K+/2Cl- co-transporter in the basolateral membrane, and the Ca2+-activated Cl- channel in the luminal membrane, which are intricately involved in fluid secretion. Thus, regulation of [Ca2+]i is central to the regulation of salivary acinar cell function and is achieved by the concerted activities of several ion channels and Ca2+-pumps localized in various cellular membranes. Ca2+ pumps, present in the endoplasmic reticulum and the plasma membrane, serve to remove Ca2+ from the cytosol. Ca2+ channels present in the endoplasmic reticulum and the plasma membrane facilitate rapid influx of Ca2+ into the cytosol from the internal Ca2+ stores and from the external medium, respectively. It is well-established that prolonged fluid secretion is regulated via a sustained elevation in [Ca2+]i that is primarily achieved by the influx of Ca2+ into the cell from the external medium. This Ca2+ influx occurs via a putative plasma-membrane-store-operated Ca2+ channel which has not yet been identified in any non-excitable cell type. Understanding the molecular nature of this Ca2+ influx mechanism is critical to our understanding of Ca2+ signaling in salivary gland cells. This review focuses on the various active and passive Ca2+ transport mechanisms in salivary gland cells--their localization, regulation, and role in neurotransmitter-regulation of fluid secretion. In addition to a historical perspective of Ca2+ signaling, recent findings and challenging problems facing this field are highlighted.

PubMed Disclaimer

LinkOut - more resources