Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 1;268(1):192-200.
doi: 10.1006/viro.1999.0155.

Genetic analysis of the cell-to-cell movement of beet yellows closterovirus

Affiliations
Free article

Genetic analysis of the cell-to-cell movement of beet yellows closterovirus

D V Alzhanova et al. Virology. .
Free article

Abstract

A beet yellows closterovirus (BYV) variant expressing green fluorescent protein and leaves of BYV local lesion host Claytonia perfoliata were used to reveal genetic requirements for BYV cell-to-cell movement in leaf epidermis and mesophyll. A series of mutations targeting genes that are not involved in amplification of the viral positive-strand RNA was analyzed. The products of genes coding for a 6-kDa hydrophobic protein (p6) and a 64-kDa protein (p64), as well as for minor and major capsid proteins, were found to be essential for intercellular translocation of BYV. In a previous work, we have demonstrated that the BYV HSP70-homolog (HSP70h) also plays a critical role in viral movement (V. V. Peremyslov, Y. Hagiwara, and V. V. Dolja, 1999, Proc. Natl. Acad. Sci. USA, 96, 14771-14776). Altogether, a unique protein quintet including three dedicated movement proteins (p6, p64, and HSP70h) and two structural proteins is required to potentiate the cell-to-cell movement of a closterovirus. The corresponding BYV genes are clustered in a block that is conserved among diverse representatives of the family Closteroviridae.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources