Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2000 Feb 22;101(7):790-6.
doi: 10.1161/01.cir.101.7.790.

Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase

Affiliations
Comment

Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase

U Schmidt et al. Circulation. .

Abstract

Background: Senescent hearts are characterized by diastolic dysfunction and a decrease in sarcoplasmic reticulum (SR) Ca(2+)-ATPase protein (SERCA2a).

Methods and results: To test the hypothesis that an increase in SERCA2a could improve cardiac function in senescent rats (age 26 months), we used a catheter-based technique of adenoviral gene transfer to achieve global myocardial transduction of SERCA2a in vivo. Adult rat hearts aged 6 months and senescent rat hearts infected with an adenovirus containing the reporter gene beta-galactosidase were used as controls. Two days after infection, parameters of systolic and diastolic function were measured in open-chest rats. Cardiac SERCA2a protein and ATPase activity were significantly decreased in senescent hearts compared with adult rats (Delta -30+/-4% and -49+/-5%) and were restored to adult levels after infection with Ad.SERCA2a. At baseline, left ventricular systolic pressure and +dP/dt were unaltered in senescent hearts; however, diastolic parameters were adversely affected with an increase in the left ventricular time constant of isovolumic relaxation and diastolic pressure (Delta +29+/-9% and +38+/-12%) and a decrease in -dP/dt (Delta -26+/-11%). Overexpression of SERCA2a did not significantly affect left ventricular systolic pressure but did increase +dP/dt (Delta +28+/-10%) in the senescent heart. Overexpression of SERCA2a restored the left ventricular time constant of isovolumic relaxation and -dP/dt to adult levels. Infection of senescent hearts with Ad.SERCA2a markedly improved rate-dependent contractility and diastolic function in senescent hearts.

Conclusions: These results support the hypothesis that decreased Ca(2+)-ATPase activity contributes to the functional abnormalities observed in senescent hearts and demonstrates that Ca(2+) cycling proteins can be targeted in the senescent heart to improve cardiac function.

PubMed Disclaimer

Comment in

Comment on

Publication types

Substances