Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross-linking reagents
- PMID: 106845
- PMCID: PMC1186359
- DOI: 10.1042/bj1770215
Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross-linking reagents
Abstract
The organization of rhodopsin in the photoreceptor membrane of sheep rod outer segments was investigated by using a variety of bifunctional reagents. Of the nine reagents used, seven gave oligomeric opsin species, whereas two, copper phenanthroline and dithiobisphenyl azide, failed to cross-link the protein. In general, the cross-linked species obtained showed diminishing yields from dimer to tetramer, together with some higher-molecular-weight aggregates. It is proposed that the patterns of cross-linking arise as a result of collision complexes and best describe a monomeric organization for native rhodopsin. No significant differences between the patterns obtained with dark-adapted bleached or regenerated protein states were observed. This interpretation is discussed in relation to the postulated mechanism of action of rhodopsin.
Similar articles
-
Cross-linking of dark-adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin.Biophys J. 1985 Mar;47(3):285-93. doi: 10.1016/S0006-3495(85)83918-7. Biophys J. 1985. PMID: 3919779 Free PMC article.
-
Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation.Biophys J. 1985 Mar;47(3):277-84. doi: 10.1016/S0006-3495(85)83917-5. Biophys J. 1985. PMID: 3919778 Free PMC article.
-
Light-enhanced cross-linking of rhodopsin in rod outer segment membranes as detected by chemical probes.Biochim Biophys Acta. 1980 Dec 12;603(2):313-21. doi: 10.1016/0005-2736(80)90377-6. Biochim Biophys Acta. 1980. PMID: 7459357
-
Thermal stability of rhodopsin and opsin in some novel detergents.Methods Enzymol. 1982;81:256-65. doi: 10.1016/s0076-6879(82)81040-9. Methods Enzymol. 1982. PMID: 6212742 No abstract available.
-
Fourier transform infrared study of photoreceptor membrane. I. Group assignments based on rhodopsin delipidation and reconstitution.Biochim Biophys Acta. 1980 Mar 13;596(3):338-51. doi: 10.1016/0005-2736(80)90121-2. Biochim Biophys Acta. 1980. PMID: 7362819
Cited by
-
Cross-linking of dark-adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin.Biophys J. 1985 Mar;47(3):285-93. doi: 10.1016/S0006-3495(85)83918-7. Biophys J. 1985. PMID: 3919779 Free PMC article.
-
Sequence variability in the retinal-attachment domain of mammalian rhodopsins.Biochem J. 1984 Feb 1;217(3):605-13. doi: 10.1042/bj2170605. Biochem J. 1984. PMID: 6370231 Free PMC article.
-
Oligomerization of G protein-coupled receptors: past, present, and future.Biochemistry. 2004 Dec 21;43(50):15643-56. doi: 10.1021/bi047907k. Biochemistry. 2004. PMID: 15595821 Free PMC article. Review.
-
Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation.Biophys J. 1985 Mar;47(3):277-84. doi: 10.1016/S0006-3495(85)83917-5. Biophys J. 1985. PMID: 3919778 Free PMC article.
-
Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer.EMBO J. 2009 Nov 4;28(21):3315-28. doi: 10.1038/emboj.2009.267. Epub 2009 Sep 17. EMBO J. 2009. PMID: 19763081 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources