Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Mar;22(3):235-44.
doi: 10.1002/(SICI)1521-1878(200003)22:3<235::AID-BIES5>3.0.CO;2-2.

Degradation of mRNA in bacteria: emergence of ubiquitous features

Affiliations
Review

Degradation of mRNA in bacteria: emergence of ubiquitous features

P Régnier et al. Bioessays. 2000 Mar.

Abstract

The amount of a messenger RNA available for protein synthesis depends on the efficiency of its transcription and stability. The mechanisms of degradation that determine the stability of mRNAs in bacteria have been investigated extensively during the last decade and have begun to be better understood. Several endo- and exoribonucleases involved in the mRNA metabolism have been characterized as well as structural features of mRNA which account for its stability have been determined. The most important recent developments have been the discovery that the degradosome-a multiprotein complex containing an endoribonuclease (RNase E), an exoribonuclease (polynucleotide phosphorylase), and a DEAD box helicase (RhlB)-has a central role in mRNA degradation and that oligo(A) tails synthesized by poly(A) polymerase facilitate the degradation of mRNAs and RNA fragments. Moreover, the phosphorylation status and the base pairing of 5' extremities, together with 3' secondary structures of transcriptional terminators, contribute to the stability of primary transcripts. Degradation of mRNAs can follow several independent pathways. Interestingly, poly(A) tails and multienzyme complexes also control the stability and the degradation of eukaryotic mRNAs. These discoveries have led to the development of refined models of mRNA degradation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources