Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 29;39(8):2032-41.
doi: 10.1021/bi9914154.

Recovery of photosystem II activity in photoinhibited synechocystis cells: light-dependent translation activity is required besides light-independent synthesis of the D1 protein

Affiliations

Recovery of photosystem II activity in photoinhibited synechocystis cells: light-dependent translation activity is required besides light-independent synthesis of the D1 protein

S Constant et al. Biochemistry. .

Abstract

Irreversible photoinactivation of photosystem II (PSII) results in the degradation of the reaction center II D1 protein. In Synechocystis PCC 6714 cells, recovery of PSII activity requires illumination. The rates of photoinactivation and recovery of PSII activity in the light are similar in cells grown in minimal (MM) or glucose-containing medium (GM). Reassembly of PSII with newly synthesized proteins requires degradation of the D1 protein of the photoinactivated PSII. This process may occur in darkness in both types of cells. The degraded D1 protein is, however, only partially replaced by newly synthesized protein in MM cells in darkness while a high level of D1 protein synthesis occurs in darkness in the GM cells. The newly synthesized D1 protein in darkness appears to be assembled with other PSII proteins. However, PSII activity is not recovered in such cells. Illumination of the cells in absence but not in the presence of protein synthesis inhibitors allows recovery of PSII activity.

PubMed Disclaimer

Publication types

LinkOut - more resources