Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 1;59(5):649-60.
doi: 10.1002/(SICI)1097-4547(20000301)59:5<649::AID-JNR8>3.0.CO;2-W.

Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-II mRNA content in diabetic rat brain

Affiliations

Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-II mRNA content in diabetic rat brain

C S Armstrong et al. J Neurosci Res. .

Abstract

Brain injury has been prevented recently by systemic administration of human insulin-like growth factor-I (hIGF-I). It is widely believed that protein neurotrophic factors do not enter the brain from blood, and the mechanism by which circulating hIGF-I may be neuroprotective is uncertain. This investigation tested the hypothesis that hIGF-I is taken up into cerebrospinal fluid (CSF) from the circulation. (125)I-hIGF-I was injected subcutaneously into rats. The (125)I-IGF-I recovered from CSF and plasma were indistinguishable in size from authentic (125)I-hIGF-I on SDS-PAGE. An ELISA was used that detected immunoreactive hIGF-I, but not rat IGF-I, rat IGF-II, human IGF-II, or insulin. Osmotic minipumps were implanted for constant subcutaneous infusion of various hIGF-I doses. Uptake into CSF reached a plateau at plasma concentrations above approximately 150 ng/ml hIGF-I; the plateau was consistent with carrier-mediated uptake. The plasma, but not CSF, hIGF-I level was significantly reduced in streptozotocin diabetic vs. nondiabetic rats, and uptake of hIGF-I into CSF was nonlinear with respect to plasma hIGF-I concentrations. Nonlinear uptake excluded leakage or transmembrane diffusion of IGF-I from blood into CSF as a dominant route for entry, but the site and mechanism of uptake remain to be established. The IGF-II mRNA content per milligram brain (P < 0.02) as well as per poly(A)(+) RNA (P < 0.05) was significantly increased towards normal in diabetic rats treated by subcutaneous administration of hIGF-I vs. vehicle. This effect of circulating hIGF-I may have been due to regulation of IGF-II gene expression in the choroid plexus and leptomeninges, structures at least in part outside of the blood-central nervous system barrier. These data support the hypothesis that circulating IGF-I supports the brain indirectly through regulation of IGF-II gene expression as well as by uptake into the CSF.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources