Use-dependent facilitation and depression of L-type Ca2+ current in guinea-pig ventricular myocytes: modulation by Ca2+ and isoprenaline
- PMID: 10690314
- DOI: 10.1016/s0008-6363(99)00216-3
Use-dependent facilitation and depression of L-type Ca2+ current in guinea-pig ventricular myocytes: modulation by Ca2+ and isoprenaline
Abstract
Objective: An increase in stimulation frequency can facilitate or depress cardiac Ca2+ current (ICa). The aim was to examine the Ca2+ dependence of these effects, to determine if facilitation is sustained, and to elucidate the mechanism by which isoprenaline modulates facilitation.
Methods: We examined the effects of increasing the stimulation frequency for 1 min, from 0.05 to 1 Hz, on ICa recorded from guinea-pig ventricular myocytes, using the whole-cell, voltage-clamp technique.
Results: 1 Hz stimulation caused a facilitation of ICa that peaked in 5 s and was followed by depression towards the basal level. Metabolic inhibitors or replacement of extracellular Ca2+ with Ba2+ abolished facilitation without affecting depression, implying that they are independent processes and that facilitation required ATP and Ca2+. Subtraction of the depression observed in either condition, from the response to 1 Hz stimulation recorded under control conditions, revealed that ICa facilitation was well maintained during 1 Hz stimulation. Increased intracellular Ca2+ buffering reduced both phases of the response. Furthermore, varying the extracellular Ca2+ concentration ([Ca2+]o) revealed a Ca(2+)-dependent enhancement of depression and a bell-shaped dependence of facilitation on [Ca2+]o. Facilitation increased with [Ca2+]o up to 1 mM, then declined at higher concentrations due to partial masking by the overlaping depression. Isoprenaline produced concentration-dependent inhibition of facilitation and enhancement of depression when pipettes contained 2 mM EGTA, but not BAPTA. For an equivalent increase in ICa amplitude, the effects of isoprenaline and elevated [Ca2+]o on the response to 1 Hz stimulation were quantitatively the same.
Conclusions: Facilitation is sustained during increased activity, but appears transient due to overlapping depression. Both responses are promoted by increased submembrane [Ca2+]. Isoprenaline appears to modulate facilitation and depression as a consequence of increased Ca2+ influx, rather than cAMP-dependent phosphorylation. The apparent block of facilitation by isoprenaline may result from masking by the enhanced depression.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
