Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Aug 15;43(3):532-41.
doi: 10.1016/s0008-6363(99)00094-2.

Signal transduction of eNOS activation

Affiliations
Review

Signal transduction of eNOS activation

I Fleming et al. Cardiovasc Res. .

Abstract

Consistent with its classification as a Ca2+/calmodulin-dependent enzyme the constitutive endothelial nitric oxide (NO) synthase (eNOS) can be activated by receptor-dependent and -independent agonists as a consequence of an increase in the intracellular concentration of free Ca2+ ([Ca2+]i) and the association of the Ca2+/calmodulin complex with eNOS. Additional post-translational mechanisms regulate the activity of eNOS, including the interaction of eNOS with caveolin-1, heat shock protein 90 (Hsp90), or membrane phospholipids, as well as enzyme translocation and phosphorylation. In response to fluid shear stress the maintained production of NO by native and cultured endothelial cells is associated with only a transient increase in [Ca2+]i. In the absence of extracellular Ca2+ and in the presence of calmodulin antagonists, shear stress stimulates a maintained production of NO which is insensitive to the removal of extracellular Ca2+, but sensitive to tyrosine kinase inhibitors, Hsp90-binding proteins and phosphatidylinositol 3-kinase inhibitors. A pharmacologically identical activation of eNOS can be induced by protein tyrosine phosphatase inhibitors suggesting that the phosphorylation of eNOS, and possibly that of an associated regulatory protein(s), is crucial for its Ca(2+)-independent activation.

PubMed Disclaimer

Publication types

LinkOut - more resources