Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;30(3):445-50.
doi: 10.1046/j.1365-2222.2000.00715.x.

Possible mechanism of bronchoprotection by SIN-1 in anaesthetized guinea pigs: roles of nitric oxide and peroxynitrite

Affiliations

Possible mechanism of bronchoprotection by SIN-1 in anaesthetized guinea pigs: roles of nitric oxide and peroxynitrite

H Kanazawa et al. Clin Exp Allergy. 2000 Mar.

Abstract

Background: S-morpholinosydnonimine (SIN-1) is thought to generate peroxynitrite. Recent reports suggested that peroxynitrite possessed a potent vascular relaxant activity via guanylate cyclase activation. However, no previous studies have examined the relaxant effect of peroxynitrite on airway smooth muscle.

Objective: To determine the mechanism of bronchoprotection by SIN-1, considering in particular the involvement of nitric oxide (NO) and peroxynitrite.

Methods: Peroxynitrite formation was assayed by monitoring the oxidizing activity of dihydrorhodamine 123, and NO was measured polarographically as a redox current in vitro. We examined the effect of SIN-1 delivered to the airway by ultrasonic nebulization against bronchoconstriction induced by acetylcholine in anaesthetized guinea pigs.

Results: SIN-1 produced peroxynitrite in a time- and concentration-dependent manner, but did not produce NO in vitro. However, when mixed with glutathione (GSH) and bronchoalveolar lavage fluid (BALF), peroxynitrite formation by SIN-1 was inhibited and SIN-1 induced the release of NO. SNAP (S-nitroso-N-acetyl-penicillamine) and SIN-1 each inhibited acetylcholine-induced bronchoconstriction in a dose-dependent manner in vivo. Though GSH alone did not have any effect on baseline airway resistance and acetylcholine-induced bronchoconstriction, pretreatment with GSH significantly enhanced SNAP- and SIN-1-induced bronchoprotection. In addition, pretreatment with carboxy-PTIO, a NO scavenger, completely inhibited bronchoprotective effect of SNAP on acetylcholine-induced bronchoconstriction, but partially inhibited SIN-1-induced bronchoprotection.

Conclusion: These findings demonstrated that SIN-1 is a potent peroxynitrite-releasing compound and caused significant bronchoprotection against acetylcholine. The mechanism of bronchoprotection by SIN-1 appears to be mediated by peroxynitrite but also at least in part through NO regeneration, which may involve GSH and airway thiols as a consequence of exposure to peroxynitrite.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources