Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;197(Pt 3):239-49.
doi: 10.1046/j.1365-2818.2000.00664.x.

ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius

Affiliations

ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius

L Cole et al. J Microsc. 2000 Mar.

Abstract

Two fluorochromes, ER-TrackerTM Blue-White DPX dye and the fluorescent brefeldin A (BFA) derivative, BODIPY-BFA, label the endoplasmic reticulum (ER) in hyphal tips of Pisolithus tinctorius and allow its differentiation from the tubular-vacuole system at the light microscope level in living cells. The ER-Tracker dye labels a reticulate network similar in distribution to ER as seen in electron micrographs of freeze-substituted hyphae. BODIPY-BFA stains a thicker axially aligned structure with an expanded region at the apex, which is similar to that seen when hyphae are stained with ER-Tracker dye in the presence of unconjugated BFA. This structure is considered to be ER modified by BFA, a view supported by ultrastructural observations of the effect of BFA on the fungal ER. Both fluorescent probes also stain punctate structures, which are most likely to be Golgi bodies. Neither probe labels the tubular-vacuole system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources