Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;35(4):845-53.
doi: 10.1046/j.1365-2958.2000.01758.x.

Involvement of differential efficiency of transcription by esigmas and esigma70 RNA polymerase holoenzymes in growth phase regulation of the Escherichia coli osmE promoter

Affiliations
Free article

Involvement of differential efficiency of transcription by esigmas and esigma70 RNA polymerase holoenzymes in growth phase regulation of the Escherichia coli osmE promoter

P Bordes et al. Mol Microbiol. 2000 Feb.
Free article

Abstract

Transcription of the gene osmE of Escherichia coli is inducible by elevated osmotic pressure and during the decelerating phase of growth. osmE expression is directed by a single promoter, osmEp. Decelerating phase induction of osmEp is dependent on the sigmas (RpoS) factor, whereas its osmotic induction is independent of sigmas. Purified Esigmas and Esigma70 were both able to transcribe osmEp in vitro on supercoiled templates. In the presence of rpoD800, a mutation resulting in a thermosensitive sigma70 factor, a shift to non-permissive temperature abolished induction of osmEp after an osmotic shock during exponential phase, but did not affect the decelerating phase induction. Point mutations affecting osmEp activity were isolated. Down-promoter mutations decreased transcription in both the presence and the absence of sigmas, indicating that the two forms of RNA polymerase holoenzyme recognize very similar sequence determinants on the osmE promoter. Three up-promoter mutations brought osmEp closer to the consensus of Esigma70-dependent promoters. The two variant promoters exhibiting the highest efficiency became essentially independent of sigmas in vivo. Our data suggest that Esigmas transcribes wild-type osmEp with a higher efficiency than Esigma70. A model in which an intrinsic differential recognition contributes to growth phase-dependent regulation is proposed. Generalization of this model to other sigmas-dependent promoters is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources