Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 17;403(6771):750-3.
doi: 10.1038/35001541.

High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer

Affiliations

High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer

MA Baldo et al. Nature. .

Abstract

To obtain the maximum luminous efficiency from an organic material, it is necessary to harness both the spin-symmetric and anti-symmetric molecular excitations (bound electron-hole pairs, or excitons) that result from electrical pumping. This is possible if the material is phosphorescent, and high efficiencies have been observed in phosphorescent organic light-emitting devices. However, phosphorescence in organic molecules is rare at room temperature. The alternative radiative process of fluorescence is more common, but it is approximately 75% less efficient, due to the requirement of spin-symmetry conservation. Here, we demonstrate that this deficiency can be overcome by using a phosphorescent sensitizer to excite a fluorescent dye. The mechanism for energetic coupling between phosphorescent and fluorescent molecular species is a long-range, non-radiative energy transfer: the internal efficiency of fluorescence can be as high as 100%. As an example, we use this approach to nearly quadruple the efficiency of a fluorescent red organic light-emitting device.

PubMed Disclaimer