Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;43(2):429-39.
doi: 10.1002/1529-0131(200002)43:2<429::AID-ANR25>3.0.CO;2-N.

Cross-reactivity of antiidiotypic antibodies with DNA in systemic lupus erythematosus

Affiliations

Cross-reactivity of antiidiotypic antibodies with DNA in systemic lupus erythematosus

E R Eivazova et al. Arthritis Rheum. 2000 Feb.

Abstract

Objective: To assess the functional relationship between antibodies reactive with DNA and antibodies reactive with the idiotypes (idiopeptides) of anti-DNA antibodies that are associated with systemic lupus erythematosus (SLE) in mice.

Methods: Antiidiotypic antibodies that appeared spontaneously in lupus mice, and others that were induced by immunization of normal, non-lupus mice, were analyzed for their reactivity by a range of direct binding, competition enzyme-linked immunosorbent assay (ELISA), and surface plasmon resonance (SPR) methods. Their reactions were assessed against synthetic peptides representing sequences of the V(H) region of anti-DNA monoclonal antibody (mAb) V-88, against the native mAb itself, and against mammalian DNA.

Results: In lupus mice, only sera with the highest reactivity against double-stranded DNA (dsDNA) also reacted with idiopeptides in ELISA, and this showed a strong statistical correlation. However, there was no significant relationship between antiidiotypic antibodies and anti-single-stranded DNA antibodies. Immunization of (BALB/c x NZW)F1 mice with idiopeptides p64 (V(H) residues 64-80) or p92 (V(H) residues 92-105) induced antibodies that reacted not only against the respective peptides, but also against the native parent anti-DNA mAb V-88. Furthermore, the immune antiidiopeptide antibodies cross-reacted with dsDNA. Competition SPR experiments with the BIAcore system supported this observation. The binding reaction of V(H) peptide p64 (representing the CDR-H2/FR-H3 region of V-88) with antiidiopeptide antibodies was inhibited by dsDNA.

Conclusion: This study identified a unique set of autoantibodies in SLE. They react with both autoantibody idiotopes and with dsDNA, thus having a dual specificity for 2 autoantigens. Because these antiidiotope antibodies arise naturally during the development of lupus disease, and because they bind also to dsDNA, this provides a mechanism whereby the production of anti-dsDNA antibodies is stimulated. These idiotopes on autoantibodies in lupus act as natural mimotopes for inducing anti-dsDNA antibodies, which, due to their dual specificity, may significantly contribute to the pathology of nephritis in SLE.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources