Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Dec;20(6):909-20.

Brevetoxin modulates neuronal sodium channels in two cell lines derived from rat brain

Affiliations
  • PMID: 10693972
Comparative Study

Brevetoxin modulates neuronal sodium channels in two cell lines derived from rat brain

S L Purkerson et al. Neurotoxicology. 1999 Dec.

Abstract

Single Na+ channel currents were recorded from cell-attached membrane patches from two neuronal cell lines derived from rat brain, B50 and B104, and compared before and after exposure of the cells to purified brevetoxin, PbTx-3. B50 and B104 Na+ channels usually exhibited fast activation and inactivation as is typical of TTX-sensitive Na+ channels. PbTx-3 modified channel gating in both cell lines. PbTx-3 caused (1) significant increases in the frequency of channel reopening, indicating a slowing of channel inactivation, (2) a change in the voltage dependence of the channels, promoting channel opening during steady-state voltage clamp of the membrane at voltages throughout the activation range of Na+ currents, but notably near the resting potential of these cells (-60 - -50 mV), and (3) a significant, 6.7 mV hyperpolarized shift in the threshold potential for channel opening. Na+ channel slope conductance did not change in PbTx-3-exposed B50 and B104 neurons. These effects of Pbx-3 may cause hyperexcitability as well as inhibitory effects in intact brain.

PubMed Disclaimer

Publication types

LinkOut - more resources