Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 7;39(9):2243-53.
doi: 10.1021/bi992226o.

Recognition of Dictyostelium discoideum lysosomal enzymes is conferred by the amino-terminal carbohydrate binding site of the insulin-like growth factor II/mannose 6-phosphate receptor

Affiliations

Recognition of Dictyostelium discoideum lysosomal enzymes is conferred by the amino-terminal carbohydrate binding site of the insulin-like growth factor II/mannose 6-phosphate receptor

P G Marron-Terada et al. Biochemistry. .

Abstract

The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/MPR) is a type I glycoprotein that mediates both the intracellular sorting of lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) residues to the lysosome and the bioavailability of IGF-II. The extracytoplasmic region of the IGF-II/MPR contains 15 repeating domains; the two carbohydrate recognition domains (CRDs) have been localized to domains 1-3 and 7-9, and the high-affinity IGF-II binding site maps to domain 11. To characterize the carbohydrate binding properties of the IGF-II/MPR, regions of the receptor encompassing the individual CRDs were produced in a baculovirus expression system. Characterization of the recombinant proteins revealed that the pH optimum for carbohydrate binding is significantly more acidic for the carboxyl-terminal CRD than for the amino-terminal CRD (i.e., pH 6.4-6.5 vs 6.9). Equilibrium binding studies demonstrated that the two CRDs exhibit a similar affinity for Man-6-P. Furthermore, substitution of the conserved arginine residue in domain 3 (R435) or in domain 9 (R1334) with alanine resulted in a similar >1000-fold decrease in the affinity for the lysosomal enzyme, beta-glucuronidase. In contrast, the two CRDs differ dramatically in their ability to recognize the distinctive modifications (i.e., mannose 6-sulfate and Man-6-P methyl ester) found on Dictyostelium discoideum lysosomal enzymes: the amino-terminal CRD binds mannose 6-sulfate and Man-6-P methyl ester with a 14-55-fold higher affinity than the carboxyl-terminal CRD. Taken together, these results demonstrate that the IGF-II/MPR contains two functionally distinct CRDs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources