Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 5;269(1):172-8.
doi: 10.1006/bbrc.2000.2148.

Microvascular pericytes express aggrecan message which is regulated by BMP-2

Affiliations
Free article

Microvascular pericytes express aggrecan message which is regulated by BMP-2

D L Diefenderfer et al. Biochem Biophys Res Commun. .
Free article

Abstract

Multipotential mesenchymal stem cells capable of chondro-osseous induction contribute to the endochondral callus of healing fractured bone. Microvascular pericytes serving the role of multipotential mesenchymal stem cells are considered osteoprogenitors because they express type I collagen, alkaline phosphatase enzyme activity, osteocalcin immunoreactivity, and bone sialoprotein mRNA. Previous electron microscopic studies indicate that this cell type has a contribution to the fracture callus. Limited data suggest that pericytes may also assume a chondrogenic phenotype. We undertook in vitro studies to understand how the chondro-osseous phenotype of the pericyte might be regulated. Using Northern analysis and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we found that cultured pericytes produce aggrecan and type II collagen mRNA indicating their chondrogenic potential. Aggrecan message is elevated by BMP-2 as analyzed by both Northern hybridization and RT-PCR. This finding suggests a regulatory role for this morphogen on this phenotype in pericytes. RT-PCR amplified versican product was also associated with pericyte cultures but was not affected by BMP-2. Our data strongly support a chondrogenic role for the pericyte and that the phenotype is regulated at least in part by BMP.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources