Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jan;108(1):1-28.
doi: 10.1034/j.1600-0463.2000.d01-1.x.

Tissue distribution of histo-blood group antigens

Affiliations
Review

Tissue distribution of histo-blood group antigens

V Ravn et al. APMIS. 2000 Jan.

Abstract

The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue type. Oligosaccharides with blood-group specificity are synthesized by the stepwise action of specific gene-encoded glycosyltransferases. In general, this stepwise synthesis of histo-blood group antigens correlates with cellular differentiation. The H and the Se genes both encode an al-2fucosyltransferase, which is responsible for the synthesis of blood group antigen H from precursor disaccharides. A new model for the participation of the Se/H-gene-encoded glycosyl transferases in synthesis of terminal histo-blood group antigens in human tissues is proposed; the type and degree of differentiation rather than the embryologic origin determines whether it is the H or the Se gene-encoded transferases that influence expression of terminal histo-blood group antigens in tissues.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources