Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;141(3):947-52.
doi: 10.1210/endo.141.3.7365.

Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling

Affiliations

Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling

C C Tseng et al. Endocrinology. 2000 Mar.

Abstract

The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a member of class II G protein-coupled receptors. Recent studies have suggested that desensitization of the GIPR might contribute to impaired insulin secretion in type II diabetic patients, but the molecular mechanisms of GIPR signal termination are unknown. Using HEK L293 cells stably transfected with GIPR complementary DNA (L293-GIPR), the mechanisms of GIPR desensitization were investigated. GIP dose dependently increased intracellular cAMP levels in L293-GIPR cells, but this response was abolished (65%) by cotransfection with G protein-coupled receptor kinase 2 (GRK2), but not with GRK5 or GRK6. Beta-arrestin-1 transfection also induced a significantly decrease in GIP-stimulated cAMP production, and this effect was greater with cotransfection of both GRK2 and beta-arrestin-1 than with either alone. In betaTC3 cells, expression of GRK2 or beta-arrestin-1 attenuated GIP-induced insulin release and cAMP production, whereas glucose-stimulated insulin secretion was not affected. GRK2 and beta-arrestin-1 messenger RNAs were identified by Northern blot analysis to be expressed endogenously in betaTC3 and L293 cells. Overexpression of GRK2 enhanced agonist-induced GIPR phosphorylation, but receptor endocytosis was not affected by cotransfection with GRKs or beta-arrestin-1. These results suggest a potential role for GRK2/beta-arrestin-1 system in modulating GIP-mediated insulin secretion in pancreatic islet cells. Furthermore, GRK-mediated receptor phosphorylation is not required for endocytosis of the GIPR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms