Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan-Feb;7(1):43-52.
doi: 10.1067/mnc.2000.99189.

Severe regional ischemia alters coronary flow reserve in the remote perfusion area

Affiliations
Free article

Severe regional ischemia alters coronary flow reserve in the remote perfusion area

J C Wu et al. J Nucl Cardiol. 2000 Jan-Feb.
Free article

Abstract

Background: Clinical and experimental studies suggest that coronary flow reserve (CFR) may be abnormal in regions remote from myocardial infarction. We sought to determine the possible relation among stenosis severity, ischemic dysfunction, and impairment of CFR in remote regions.

Methods and results: In 7 open-chest dogs, acute graded left circumflex (LCX) ischemia was created and maintained based on measurement of the transstenotic (aortic-distal LCX) pressure gradient (measured in millimeters of mercury). Regional thickening was assessed with sonomicrometers. Regional myocardial flow was assessed at rest with radiolabeled microspheres. Doppler flow probes were placed on proximal LCX and left anterior descending (LAD) arteries to measure resting flow and CFR in response to intracoronary injection of adenosine (36 microg). These parameters were assessed under baseline conditions and during transstenotic gradients of 10, 20, 30, and 40 mm Hg. Increasing LCX stenosis severity caused progressive impairment of LCX CFR: baseline (2.22+/-0.10), stenosis 10 (1.80+/-0.06), stenosis 20 (1.56+/-0.08), stenosis 30 (1.30+/-0.04), and stenosis 40 (1.17+/-0.06) (P<.01 vs. baseline). Remote LAD CFR was not altered by mild to moderate LCX stenosis (baseline [2.33+/-0.19]; stenosis 10 [2.30+/-0.25]; stenosis 20 [2.15+/-0.26]). However, critical LCX stenosis producing mild to moderate reduction in thickening in the ischemic region was associated with a significant impairment of LAD CFR: stenosis 30 (1.90+/-0.26) and stenosis 40 (1.80+/-0.22) (P<.01 vs. baseline). These changes in remote CFR persisted after correction for changes in the rate-pressure product.

Conclusion: In an acute canine model of progressive LCX coronary stenosis, CFR was impaired in both ischemic and remote nonischemic regions in association with mild to moderate ischemic-induced regional myocardial dysfunction. Thus pharmacologic vasodilation provoked only mild heterogeneity in CFR in the presence of a critical LCX stenosis as a result of concurrent reduction of LAD CFR. This phenomenon warrants further clinical and experimental investigation because it may affect detection of flow heterogeneity during acute ischemia (which induced myocardial dysfunction).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cardiovasc Res. 1986 Apr;20(4):275-81 - PubMed
    1. Circulation. 1996 Nov 15;94(10 ):2447-54 - PubMed
    1. Circulation. 1985 Jul;72(1):82-92 - PubMed
    1. Am J Cardiol. 1993 May 20;71(14 ):10D-16D - PubMed
    1. J Mol Cell Cardiol. 1982 Apr;14(4):195-205 - PubMed

Publication types

LinkOut - more resources