Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Feb;19(1-2):15-32.
doi: 10.1016/s0731-7085(98)00088-0.

Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection

Affiliations
Review

Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection

B B Anderson et al. J Pharm Biomed Anal. 1999 Feb.

Abstract

The identified dopamine cell of Planorbis corneus is described as a model system to study neurotransmitter storage and dynamics. Techniques developed with this model system include capillary electrophoresis with electrochemical detection and microelectrochemistry at single cells. These techniques provide a powerful combination to examine single cell neurochemistry. Whole cell and cytoplasmic dopamine concentrations have been quantified with capillary electrophoresis. Additionally, this technique has been used to profile amino acids and to quantify two compartments of neurotransmitter in a single cell. Individual exocytosis events have been monitored at the cell body of the dopamine cell of P. corneus with microelectrodes. In this case, two different types of vesicles have been identified based on the amount of transmitter released. The psychostimulant, amphetamine, has been shown to selectively affect the amount of dopamine in these vesicles with lower to higher doses affecting the larger to smaller vesicle types, respectively. Microelectrochemistry at single nerve cells has also been used to demonstrate reverse transport of dopamine across the cell membrane and to suggest a role of this process in the molecular mechanism of amphetamine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources