Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;40(2):153-62.
doi: 10.1016/s0167-7012(00)00120-2.

Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments

Affiliations

Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments

E W Alm et al. J Microbiol Methods. 2000 Apr.

Abstract

A protocol was developed for the efficient recovery of intact, high molecular weight rRNA from different environmental matrices. Critical variables were identified in sample processing that influenced yield and integrity of recovered nucleic acid. Most notably, the order of addition and the buffer to sample volume ratio profoundly influenced the efficiency of nucleic acid recovery from sediment material when utilizing a guanidine thiocyanate-beta-mercaptoethaol extraction buffer. Addition of one sample volume to five buffer volumes contributed to an order of magnitude increase in recovery relative to reverse order of addition (buffer addition to sample). An optimized extraction protocol was used to evaluate rRNA yield by seeding samples with whole cells and radiolabeled nucleic acid. Recovery of intact rRNA was confirmed by polyacrylamide gel electrophoresis, which was also used to provide another estimate of quantity. This optimized protocol was used to measure depth-related changes in biomass distribution in Lake Michigan deep-water sediments. This revealed a biomodal biomass distribution; a maximum near the water/sediment interface and a secondary peak associated with the oxic/suboxic boundary. A significant portion of the community at the oxic/suboxic boundary was composed of non-methanogenic Archaea.

PubMed Disclaimer

Publication types

LinkOut - more resources