Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;31(3):738-43; discussion 744.
doi: 10.1161/01.str.31.3.738.

Stroke in estrogen receptor-alpha-deficient mice

Affiliations

Stroke in estrogen receptor-alpha-deficient mice

K Sampei et al. Stroke. 2000 Mar.

Abstract

Background and purpose: Recent evidence suggests that endogenous estrogens or hormone replacement therapy can ameliorate brain damage from experimental stroke. Protective mechanisms involve enhanced cerebral vasodilation during ischemic stress as well as direct preservation of neuronal viability. We hypothesized that if the intracellular estrogen receptor subtype-alpha (ERalpha) is important to estrogen's signaling in the ischemic brain, then ERalpha-deficient (knockout) (ERalphaKO) female mice would sustain exaggerated cerebral infarction damage after middle cerebral artery occlusion.

Methods: The histopathology of cresyl violet-stained tissues was evaluated after reversible middle cerebral artery occlusion (2 hours, followed by 22 hours of reperfusion) in ERalphaKO transgenic and wild-type (WT) mice (C57BL/6J background strain). End-ischemic cerebral blood flow mapping was obtained from additional female murine cohorts by using [(14)C]iodoantipyrine autoradiography.

Results: Total hemispheric tissue damage was not altered by ERalpha deficiency in female mice: 51.9+/-10.6 mm(3) in ERalphaKO versus 60.5+/-5.0 mm(3) in WT. Striatal infarction was equivalent, 12.2+/-1.7 mm(3) in ERalphaKO and 13.4+/-1.0 mm(3) in WT mice, but cortical infarction was paradoxically smaller relative to that of the WT (20.7+/-4.5 mm(3) in ERalphaKO versus 30.6+/-4.1 mm(3) in WT). Intraocclusion blood flow to the parietal cortex was higher in ERalphaKO than in WT mice, likely accounting for the reduced infarction in this anatomic area. There were no differences in stroke outcomes by region or genotype in male animals.

Conclusions: Loss of ERalpha does not enhance tissue damage in the female animal, suggesting that estrogen inhibits brain injury by mechanisms that do not depend on activation of this receptor subtype.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances