Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Mar;45(3):198-207.
doi: 10.1006/eesa.1999.1860.

Microbial resistance to metals in the environment

Affiliations
Review

Microbial resistance to metals in the environment

M R Bruins et al. Ecotoxicol Environ Saf. 2000 Mar.

Abstract

Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.

PubMed Disclaimer

MeSH terms

LinkOut - more resources