Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 24;10(4):187-94.
doi: 10.1016/s0960-9822(00)00336-5.

Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila

Affiliations
Free article

Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila

R J Bainton et al. Curr Biol. .
Free article

Abstract

Background: Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown.

Results: We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol.

Conclusions: We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources