Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 15;164(6):2931-6.
doi: 10.4049/jimmunol.164.6.2931.

Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved

Affiliations

Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved

S Kim et al. J Immunol. .

Abstract

Previous reports that diabetogenic lymphocytes did not induce diabetes in nonobese diabetic (NOD)-lpr mice suggested the critical role of Fas-Fas ligand (FasL) interaction in pancreatic beta cell apoptosis. However, recent works demonstrated that FasL is not an effector molecule in islet beta cell death. We addressed why diabetes cannot be transferred to NOD-lpr mice despite the nonessential role of Fas in beta cell apoptosis. Lymphocytes from NOD-lpr mice were constitutively expressing FasL. A decrease in the number of FasL+ lymphocytes by neonatal thymectomy facilitated the development of insulitis. Cotransfer of FasL+ lymphocytes from NOD-lpr mice completely abrogated diabetes after adoptive transfer of lymphocytes from diabetic NOD mice. The inhibition of diabetes by cotransferred lymphocytes was reversed by anti-FasL Ab, indicating that FasL on abnormal lymphocytes from NOD-lpr mice was responsible for the inhibition of diabetes transfer. Pretreatment of lymphocytes with soluble FasL (sFasL) also inhibited diabetes transfer. sFasL treatment decreased the number of CD4+CD45RBlow cells and increased the number of propidium iodide-stained cells among CD4+CD45RBlow cells, suggesting that sFasL induces apoptosis on CD4+CD45RBlow "memory" cells. These results resolve the paradox between previous findings and suggest a new role for FasL in the treatment of autoimmune disorders. Our data also suggest that sFasL is involved in the deletion of potentially hazardous peripheral "memory" cells, contrary to previous reports that Fas on unmanipulated peripheral lymphocytes is nonfunctional.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms