Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;43(8):795-807.

Convergence of the BMP and EGF signaling pathways on Smad1 in the regulation of chondrogenesis

Affiliations
  • PMID: 10707903

Convergence of the BMP and EGF signaling pathways on Smad1 in the regulation of chondrogenesis

K Nonaka et al. Int J Dev Biol. 1999 Nov.

Abstract

Bone morphogenetic protein 4 (BMP4) induces, whereas epidermal growth factor (EGF) inhibits chondrogenesis. We hypothesize that BMP4 and EGF mediated intracellular signals are both coupled in the regulation of Meckel's cartilage development. Two chondrogenic experimental model systems were employed to test the hypothesis: (1) an ex vivo, serum-free, organ culture system for mouse embryonic mandibular processes, and (2) a micromass culture system for chicken embryonic mandibular processes. Chondrogenesis was assayed by alcian blue staining and expression of Sox9 and type II collagen. Exogenous EGF inhibited and BMP4 induced ectopic cartilage in a dose-dependent manner. When BMP4- and EGF-soaked beads were implanted in juxtaposition within embryonic day 10 mouse mandibular processes, the incidence and amount of ectopic cartilage, and Sox9 and type II collagen expression induced by BMP4, were significantly reduced as the concentration of EGF was increased. Similarly, in chicken serum-free micromass cultures, expression of a constitutively active BMP receptor type IB by replication competent avian retrovirus system promoted the rate and extent of chondrogenesis; however, exogenous EGF attenuated this effect. In micromass cultures, BMP signaling resulted in nuclear translocation and accumulation of the signaling molecule Smad1, whereas the addition of EGF inhibited this event. Our results suggest that BMP4 and EGF function antagonistically, yet are coupled in the regulation of initial chondrogenesis. Smad1 serves as a point of convergence for the integration of two different growth factor signaling pathways during chondrogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources