Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;18(1):53-9.
doi: 10.1016/s0736-5748(99)00106-9.

Ontogeny of epinephrine metabolic pathways in the rat: role of glucocorticoids

Affiliations

Ontogeny of epinephrine metabolic pathways in the rat: role of glucocorticoids

B Kennedy et al. Int J Dev Neurosci. 2000 Feb.

Abstract

Recent studies suggest that the initial expression of adrenal phenylethanolamine N-methyltransferase (PNMT) and epinephrine (E) are dependent upon stimulation of adrenal glucocorticoid receptors. However, evidence suggests that the expression of heart and brain PNMT is independent of glucocorticoids. We measured PNMT activity and E levels in adrenal, heart and head over the latter half of gestation in rat fetuses treated chronically with glucocorticoids, and in normal controls. Chronic glucocorticoid treatment ending on embryonic day (e)12 did not affect heart, head or trunk PNMT activity or E levels. In contrast, chronic glucocorticoid exposure ending e19 or e20 resulted in marked increases in both PNMT and E in adrenal, heart and head tissues. The elevation of E in all three tissues was unaffected by maternal adrenalectomy, indicating enhanced fetal E synthesis. In the absence of exogenous glucocorticoid treatment heart PNMT activity peaked on e12, prior to the earliest reported appearance of glucocorticoid receptors. We conclude that expression of PNMT in all three tissues is glucocorticoid independent until the latter part of gestation when it is readily enhanced by glucocorticoids.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms