Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;21(7):683-91.
doi: 10.1016/s0142-9612(99)00197-0.

Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers

Affiliations

Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers

J H Lee et al. Biomaterials. 2000 Apr.

Abstract

Polyethylene oxide (PEO) surfaces were prepared by the addition of PEO-containing amphiphilic block copolymers as surface modifying additives and of dicumyl peroxide (DCP) as a crosslinking agent in segmented polyurethane (PU). PEO-polypropylene oxide-PEO triblock copolymers (Pluronics) with different PEO chain length (from 0 to 98) were used as the surface modifying additives. The PEO additives in the PU film were then crosslinked to be stably entrapped in the PU matrix. The crosslinking was done by free radicals produced from the decomposition of DCP in the film through heating (120 degrees C) or ultraviolet irradiation (254 nm). The surface properties of the PEO additive-entrapped PU films were investigated by the measurement of water contact angles and electron spectroscopy for chemical analysis. The bulk properties such as water absorption, long-term film stability, and tensile strength and elongation at break, were also investigated. It was observed that addition of a small amount (5 wt% based on PU) of the PEO additives resulted in a considerable change of surface characteristics. The PEO additives were stably entrapped in the PU films by crosslinking of them, without significant changes of bulk properties of the films. From the platelet adhesion test on the prepared PEO additive-containing film surfaces, it was observed that the platelet adhesion on the surfaces decreases with increase in PEO chain length of PEO additives. The film surface containing additive with long PEO chains (chain length of 98) was particularly effective in preventing platelet adhesion. The crosslinking of the PEO additives in PU films did not affect the behavior of platelet adhesion on the surfaces; the films with crosslinked PEO additives showed similar platelet adhesion on the surfaces to the films with uncrosslinked ones.

PubMed Disclaimer

Publication types

LinkOut - more resources