Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 17;282(1-2):113-6.
doi: 10.1016/s0304-3940(00)00878-8.

The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain

Affiliations

The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain

D P Sarco et al. Neurosci Lett. .

Abstract

The iron chelator deferoxamine is efficacious in ameliorating hypoxic-ischemic brain injury in some models, perhaps by decreasing oxidative stress. Transgenic copper/zinc superoxide dismutase-1 (SOD1) overexpression in neonatal mice increases brain injury after hypoxia-ischemia compared to non-transgenic wildtype littermates because of increased oxidative stress. A neonatal mouse model of hypoxia-ischemia was used to examine histopathological damage, iron histochemistry and free iron concentration in the brains of SOD1 transgenic and non-transgenic littermates. Deferoxamine significantly decreased injury in non-transgenics compared to controls with a trend toward neuroprotection in the transgenics. There was no difference in free iron concentrations in the brains of SOD1 overexpressors or non-transgenics. Deferoxamine may protect the neonatal brain by a number of anti-oxidant mechanisms including iron chelation, enhancement of stress gene expression, or induction of other factors responsible for neuroprotection.

PubMed Disclaimer

Publication types

LinkOut - more resources