Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 7;203(3):249-83.
doi: 10.1006/jtbi.2000.1088.

Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis

Affiliations

Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis

C H Schilling et al. J Theor Biol. .

Abstract

The annotated full DNA sequence is becoming available for a growing number of organisms. This information along with additional biochemical and strain-specific data can be used to define metabolic genotypes and reconstruct cellular metabolic networks. The first free-living organism for which the entire genomic sequence was established was Haemophilus influenzae. Its metabolic network is reconstructed herein and contains 461 reactions operating on 367 intracellular and 84 extracellular metabolites. With the metabolic reaction network established, it becomes necessary to determine its underlying pathway structure as defined by the set of extreme pathways. The H. influenzae metabolic network was subdivided into six subsystems and the extreme pathways determined for each subsystem based on stoichiometric, thermodynamic, and systems-specific constraints. Positive linear combinations of these pathways can be taken to determine the extreme pathways for the complete system. Since these pathways span the capabilities of the full system, they could be used to address a number of important physiological questions. First, they were used to reconcile and curate the sequence annotation by identifying reactions whose function was not supported in any of the extreme pathways. Second, they were used to predict gene products that should be co-regulated and perhaps co-expressed. Third, they were used to determine the composition of the minimal substrate requirements needed to support the production of 51 required metabolic products such as amino acids, nucleotides, phospholipids, etc. Fourth, sets of critical gene deletions from core metabolism were determined in the presence of the minimal substrate conditions and in more complete conditions reflecting the environmental niche of H. influenzae in the human host. In the former case, 11 genes were determined to be critical while six remained critical under the latter conditions. This study represents an important milestone in theoretical biology, namely the establishment of the first extreme pathway structure of a whole genome.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources