Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Apr;22(4):337-50.
doi: 10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z.

Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases

Affiliations
Review

Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases

K Palczewski et al. Bioessays. 2000 Apr.

Abstract

The complex sensation of vision begins with the relatively simple photoisomerization of the visual pigment chromophore 11-cis-retinal to its all-trans configuration. This event initiates a series of biochemical reactions that are collectively referred to as phototransduction, which ultimately lead to a change in the electrochemical signaling of the photoreceptor cell. To operate in a wide range of light intensities, however, the phototransduction pathway must allow for adjustments to background light. These take place through physiological adaptation processes that rely primarily on Ca(2+) ions. While Ca(2+) may modulate some activities directly, it is more often the case that Ca(2+)-binding proteins mediate between transient changes in the concentration of Ca(2+) and the adaptation processes that are associated with phototransduction. Recently, combined genetic, physiological, and biochemical analyses have yielded new insights about the properties and functions of many phototransduction-specific components, including some novel Ca(2+)-binding proteins. Understanding these Ca(2+)-binding proteins will provide a more complete picture of visual transduction, including the mechanisms associated with adaptation, and of related degenerative diseases.

PubMed Disclaimer

Publication types

MeSH terms