Administration of selective endothelin receptor type A antagonist Ro 61-1790 does not improve outcome in focal cerebral ischemia in cat
- PMID: 10724114
- DOI: 10.1097/00004647-200003000-00008
Administration of selective endothelin receptor type A antagonist Ro 61-1790 does not improve outcome in focal cerebral ischemia in cat
Abstract
The authors examined the effect of selective endothelin (ET) receptor type A (ET(A)) antagonism on histological and functional recovery in cat at 24 hours after reversible middle cerebral artery occlusion (MCAO). A novel and specific ET(A) antagonist, Ro 61-1790 [5-methylpyridine-2-sulfonic acid-6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(2-1H-tetrazol-5-y l-pyridin-4-yl)-pyrimidin-4-ylamide sodium salt (1:2)] (Roche, Basel, Switzerland), was used at doses that produced steady-state plasma concentrations and abolished ET-induced pial arteriolar vasoconstriction. In a cranial window preparation, 8 nmol/L ET constricted pial arterioles by 33 +/- 18% (mean +/- SD), but this response was ablated by intravenous Ro 61-1790 treatment (10-mg/kg bolus, 4-mg/kg/h infusion). In additional animal cohorts, halothane-anesthetized cats were treated with 90 minutes of MCAO and 24 hours of reperfusion. Animals received Ro 61-1790 infusion beginning at the onset of reperfusion and continuing for 6 or 24 hours (n = 41). Control cats were treated with 0.9% saline by intravenous infusion throughout reperfusion. There was no difference in injury volume or neurologic evaluation score in saline-treated cats (n = 11; caudate 24 +/- 28%, cortical injury 7.5 +/- 5% of ipsilateral structure; score 52 +/- 8) versus the results in cats treated with Ro 61-1790 for either 24 hours (n = 6; caudate 22 +/- 23%, cortex 6 +/- 5%, injury volume of ipsilateral structure; score 55 +/- 3) or 6 hours (n = 11; caudate 33 +/- 30%, cortex 12 +/- 14%, injury volume of ipsilateral structure; score 50 +/- 10). Mortality was greatest in the 24-hour drug treatment group. These data suggest that blockade of ET(A) receptor activity is not beneficial to tissue or functional outcomes from experimental stroke in cat.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
