Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 30;269(1):26-36.
doi: 10.1006/viro.1999.0169.

Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants

Affiliations
Free article

Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants

R F Karyeija et al. Virology. .
Free article

Abstract

When infecting alone, Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) and Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus) cause no or only mild symptoms (slight stunting and purpling), respectively, in the sweet potato (Ipomoea batatas L. ). In the SPFMV-resistant cv. Tanzania, SPFMV is also present at extremely low titers, though plants are systemically infected. However, infection with both viruses results in the development of sweet potato virus disease (SPVD) characterized by severe symptoms in leaves and stunting of the plants. Data from this study showed that SPCSV remains confined to phloem and at a similar or slightly lower titer in the SPVD-affected plants, whereas the amounts of SPFMV RNA and CP antigen increase 600-fold. SPFMV was not confined to phloem, and the movement from the inoculated leaf to the upper leaves occurred at a similar rate, regardless of whether or not the plants were infected with SPCSV. Hence, resistance to SPFMV in cv. Tanzania was not based on restricted virus movement, neither did SPCSV significantly enhance the phloem loading or unloading of SPFMV. It is also noteworthy that SPVD is an unusual synergistic interaction in that the potyvirus component is not the cause of synergism but is the beneficiary. It is hypothesized that SPCSV is able to enhance the multiplication of SPFMV in tissues other than where it occurs itself, perhaps by interfering with systemic phloem-dependent signaling required in a resistance mechanism directed against SPFMV.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources