Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;127(8):1751-66.
doi: 10.1242/dev.127.8.1751.

The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons

Affiliations

The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons

A Caton et al. Development. 2000 Apr.

Abstract

During development, cranial motor neurons extend their axons along distinct pathways into the periphery. For example, branchiomotor axons extend dorsally to leave the hindbrain via large dorsal exit points. They then grow in association with sensory ganglia, to their targets, the muscles of the branchial arches. We have investigated the possibility that pathway tissues might secrete diffusible chemorepellents or chemoattractants that guide cranial motor axons, using co-cultures in collagen gels. We found that explants of dorsal neural tube or hindbrain roof plate chemorepelled cranial motor axons, while explants of cranial sensory ganglia were weakly chemoattractive. Explants of branchial arch mesenchyme were strongly growth-promoting and chemoattractive for cranial motor axons. Enhanced and oriented axon outgrowth was also elicited by beads loaded with Hepatocyte Growth Factor (HGF); antibodies to this protein largely blocked the outgrowth and orientation effects of the branchial arch on motor axons. HGF was expressed in the branchial arches, whilst Met, which encodes an HGF receptor, was expressed by subpopulations of cranial motor neurons. Mice with targetted disruptions of HGF or Met showed defects in the navigation of hypoglossal motor axons into the branchial region. Branchial arch tissue may thus act as a target-derived factor that guides motor axons during development. This influence is likely to be mediated partly by Hepatocyte Growth Factor, although a component of branchial arch-mediated growth promotion and chemoattraction was not blocked by anti-HGF antibodies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources