Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 1;60(5):1254-60.

Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells

Affiliations
  • PMID: 10728684

Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells

M H Barcellos-Hoff et al. Cancer Res. .

Abstract

We have shown that ionizing radiation, a known carcinogen of human breast, elicits rapid, persistent, and global changes in the mammary microenvironment as evidenced by altered extracellular matrix composition and growth factor activities. To address whether these events contribute to radiogenic carcinogenesis, we evaluated the effect of irradiated mammary stroma on the neoplastic potential of COMMA-D mammary epithelial cells. Although COMMA-D cells harbor mutations in both alleles of p53, they are nontumorigenic when injected s.c. into syngeneic hosts. Unirradiated COMMA-D cells transplanted to mammary fat pads cleared previously of epithelia preferentially formed tumors in irradiated hosts. Tumor incidence at 6 weeks was 81% +/- 12 SE when animals were irradiated with 4 Gy, 3 days prior to transplantation, compared with 19% +/- 2 SE (P < 0.005) in sham-irradiated hosts. This effect was evident when cells were transplanted 1 to 14 days after irradiation. Furthermore, tumors were significantly larger (243.1 +/- 61.3 mm3 versus 30.8 +/- 8.7 mm3) and arose more quickly (100% by 6 weeks versus 39% over 10 weeks in sham hosts) in fat pads in irradiated hosts. The contribution of local versus systemic effects was evaluated using hemibody (left versus right) irradiation; tumors formed only in fat pads on the irradiated side. These data indicate that radiation-induced changes in the stromal microenvironment can contribute to neoplastic progression in vivo. Disruption of solid tissue interactions is a heretofore unrecognized activity of ionizing radiation as a carcinogen.

PubMed Disclaimer

Publication types

LinkOut - more resources