Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 31;275(13):9095-8.
doi: 10.1074/jbc.275.13.9095.

Activated protein C directly activates human endothelial gelatinase A

Affiliations
Free article

Activated protein C directly activates human endothelial gelatinase A

M Nguyen et al. J Biol Chem. .
Free article

Abstract

Angiogenesis (formation of new blood vessels) occurs in a number of diseases such as cancer and arthritis. The matrix metalloproteinase (MMP), gelatinase A, is secreted by endothelial cells and plays a vital role during angiogenesis. It is secreted as a latent enzyme and requires extracellular activation. We investigated whether activated protein C (APC), a pivotal molecule involved in the body's natural anti-coagulant system, could activate latent gelatinase A secreted by human umbilical vein endothelial cells (HUVEC). APC induced the fully active form of gelatinase A in a dose (100-300 nM)- and time (4-24 h)-responsive manner. The inactive zymogen, protein C, did not activate gelatinase A when used at similar concentrations. APC did not up-regulate membrane type 1 MMP (MT1-MMP) mRNA in HUVEC. In addition, the MMP inhibitor, 1, 10-phenanthroline (10 nM), was unable to inhibit APC-induced activation. These results suggested that MT1-MMP was not involved in the activation process. APC activation of gelatinase A occurred in the absence of cells, indicating that it acts directly. APC may contribute to the physiological/pathological mechanism of gelatinase A activation, especially during angiogenesis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources