Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 31;275(13):9348-57.
doi: 10.1074/jbc.275.13.9348.

The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors

Affiliations
Free article

The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors

E K Schmitt et al. J Biol Chem. .
Free article

Abstract

Here we report the isolation and characterization of a novel transcription factor from the cephalosporin C-producing fungus Acremonium chrysogenum. We have identified a protein binding site in the promoter of the beta-lactam biosynthesis gene pcbC, located 418 nucleotides upstream of the translational start. Using the yeast one-hybrid system, we succeeded in isolating a cDNA clone encoding a polypeptide, which binds specifically to the pcbC promoter. The polypeptid shows significant sequence homology to human transcription factors of the regulatory factor X (RFX) family and was designated CPCR1. A high degree of CPCR1 binding specificity was observed in in vivo and in vitro experiments using mutated versions of the DNA binding site. The A. chrysogenum RFX protein CPCR1 recognizes an imperfect palindrome, which resembles binding sites of human RFX transcription factors. One- and two-hybrid experiments with truncated versions of CPCR1 showed that the protein forms a DNA binding homodimer. Nondenaturing electrophoresis revealed that the CPCR1 protein exists in vitro solely in a multimeric, probably dimeric, state. Finally, we isolated a homologue of the cpcR1 gene from the penicillin-producing fungus Penicillium chrysogenum and determined about 60% identical amino acid residues in the DNA binding domain of both fungal RFX proteins, which show an overall amino acid sequence identity of 29%.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources