Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 31;275(13):9734-41.
doi: 10.1074/jbc.275.13.9734.

The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae

Affiliations
Free article

The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae

A Calzada et al. J Biol Chem. .
Free article

Abstract

The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of prereplicative complexes that are a prerequisite for firing origins during DNA replication in the S phase. In budding yeast, the presence of Cdc6 protein is normally restricted to the G(1) phase of the cell cycle, at least partly because of its proteolytic degradation in the late G(1)/early S phase. Here we show that a Cdc28-dependent mechanism targets p57(CDC6) for degradation in mitotic-arrested budding yeast cells. Consistent with this observation, Cdc6-7 and Cdc6-8 proteins, mutants lacking Cdc28 phosphorylation sites, are stabilized relative to wild-type Cdc6. Our data also suggest a correlation between the absence of Cdc28/Clb kinase activity and Cdc6 protein stabilization, because a drop in Cdc28/Clb-associated kinase activity allows mitotic-arrested cells to accumulate Cdc6 protein. Finally, we also show that cdc28 temperature-sensitive G(1) mutants accumulate Cdc6 protein because of a post-transcriptional mechanism. Our data suggest that budding yeast cells target Cdc6 for degradation through a Cdc28-dependent mechanism in each cell cycle.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources