Folding of a synthetic parallel beta-roll protein
- PMID: 10734229
- DOI: 10.1016/s0014-5793(00)01308-9
Folding of a synthetic parallel beta-roll protein
Abstract
Recently, the design of beta-sheet proteins and concomitant folding studies have attracted increasing attention. A unique natural all-beta domain occurs in a family of cytolytic bacterial toxins, the so-called RTX toxins. This domain consists of a variable number (about 6-45) of tandem repeats of a glycine-rich nine-residue motif with the consensus sequence GGXGXDX(L/I/F)X. The analysis of the three-dimensional structure of alkaline protease from Pseudomonas aeruginosa which possesses six of these repeats revealed that they fold into a novel 'parallel beta-roll' where calcium is bound within the turns connecting the beta-strands. A 75-mer peptide of the sequence NH(2)-WLS-[GGSGNDNLS](8)-COOH was chemically synthesised. Circular dichroism spectroscopy showed that this polypeptide folds in the presence of Ca(2+) and polyethylene glycol into a beta-structure which is presumably identical with the parallel beta-roll. This synthetic beta-roll behaves similarly to the isolated beta-roll domains from Escherichia coli haemolysin or Bordetella pertussis cyclolysin in terms of calcium binding and polymerisation behaviour.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous