Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Feb;11(1):15-25.
doi: 10.1006/scdb.1999.0347.

Roles of molecular chaperones in cytoplasmic protein folding

Affiliations
Review

Roles of molecular chaperones in cytoplasmic protein folding

V R Agashe et al. Semin Cell Dev Biol. 2000 Feb.

Abstract

Newly synthesized polypeptide chains must fold and assemble into unique three-dimensional structures in order to become functionally active. In many cases productive folding depends on assistance from molecular chaperones, which act in preventing off-pathway reactions during folding that lead to aggregation. The inherent tendency of incompletely folded polypeptide chains to aggregate is thought to be strongly enhanced$L in vivo *I$Lby the high macromolecular concentration of the cellular solution, resulting in crowding effects, and by the close proximity of nascent polypeptide chains during synthesis on polyribosomes. The major classes of chaperones acting in cytoplasmic protein folding are the Hsp70s and the chaperonins. Hsp70 chaperones shield the hydrophobic regions of nascent and incompletely folded chains, whereas the chaperonins provide a sequestered environment in which folding can proceed unimpaired by intermolecular interactions between non-native polypeptides. These two principles of chaperone action can function in a coordinated manner to ensure the efficient folding of a subset of cytoplasmic proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources