Meta-analysis of genome searches
- PMID: 10738538
- DOI: 10.1046/j.1469-1809.1999.6330263.x
Meta-analysis of genome searches
Abstract
We have developed a method for meta-analysis of genome scans which allows systematic integration of data from published results. The Genome Search Meta-analysis method (GSMA) uses a non-parametric ranking method to identify genetic regions that show consistently increased sharing statistics or lod scores. The GSMA ranks genetic regions according to the lod score or p-value achieved in each scan. The summed rank across studies is compared to its probability distribution assuming ranks are randomly assigned. The GSMA can confirm evidence for regions highlighted in the original genome scans, and identify novel regions, which did not reach significance in any scan. In this paper, the GSMA was applied to four genome screens in multiple sclerosis and across 11 screens from autoimmune disorders. The GSMA is appropriate for studies with different family ascertainment, markers, and statistical analysis methods. The method increases the power to detect individual linkages in a clinically homogeneous dataset and has the potential to detect susceptibility loci in clinically distinct diseases which show involvement of common pathogenetic pathways.
Similar articles
-
Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations.BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S42. doi: 10.1186/1471-2156-6-S1-S42. BMC Genet. 2005. PMID: 16451653 Free PMC article.
-
Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches.J Hum Genet. 2006;51(11):1015-1021. doi: 10.1007/s10038-006-0053-x. Epub 2006 Sep 22. J Hum Genet. 2006. PMID: 17024316
-
Osteoarthritis susceptibility loci defined by genome scan meta-analysis.Rheumatol Int. 2006 Sep;26(11):959-63. doi: 10.1007/s00296-006-0181-9. Epub 2006 Aug 25. Rheumatol Int. 2006. PMID: 16932962
-
The current state of multiple sclerosis genetic research.Ann Acad Med Singap. 2000 May;29(3):322-30. Ann Acad Med Singap. 2000. PMID: 10976385 Review.
-
Meta-analysis of genome-wide linkage studies of asthma and related traits.Respir Res. 2008 Apr 28;9(1):38. doi: 10.1186/1465-9921-9-38. Respir Res. 2008. PMID: 18442398 Free PMC article. Review.
Cited by
-
Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions.Eur J Hum Genet. 2013 Aug;21(8):876-82. doi: 10.1038/ejhg.2012.263. Epub 2012 Dec 5. Eur J Hum Genet. 2013. PMID: 23211697 Free PMC article.
-
Detecting simultaneous changepoints in multiple sequences.Biometrika. 2010 Sep;97(3):631-645. doi: 10.1093/biomet/asq025. Epub 2010 Jun 16. Biometrika. 2010. PMID: 22822250 Free PMC article.
-
Genome-wide meta-analysis for rheumatoid arthritis.Hum Genet. 2006 Jul;119(6):634-41. doi: 10.1007/s00439-006-0171-8. Epub 2006 Apr 13. Hum Genet. 2006. PMID: 16612613
-
Meta-analysis of genome-wide linkage studies across autoimmune diseases.Eur J Hum Genet. 2009 Feb;17(2):236-43. doi: 10.1038/ejhg.2008.163. Epub 2008 Sep 10. Eur J Hum Genet. 2009. PMID: 18781189 Free PMC article.
-
Meta-analysis of genome-wide linkage studies in celiac disease.Hum Hered. 2009;68(4):223-30. doi: 10.1159/000228920. Epub 2009 Jul 22. Hum Hered. 2009. PMID: 19622889 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources