Disruption of the MRP-L23 gene encoding the mitochondrial ribosomal protein L23 is lethal for Kluyveromyces lactis but not for Saccharomyces cerevisiae
- PMID: 10743564
- DOI: 10.1007/s002940050014
Disruption of the MRP-L23 gene encoding the mitochondrial ribosomal protein L23 is lethal for Kluyveromyces lactis but not for Saccharomyces cerevisiae
Abstract
The Kluyveromyces lactis nuclear gene, MRP-L23, encodes a polypeptide of 155 amino acids that shares 70% and 43% identity to the ribosomal proteins L23 and L13 of Saccharomyces cerevisiae and Escherichia coli. The deduced protein, designated K1L23, is a likely component of the large subunit of mitochondrial ribosomes as it can complement the respiratory deficient phenotype of a S. cerevisiae mrp-L23 mutant. As in S. cerevisiae, KlMRP-L23 is essential for respiratory growth of K. lactis because disruption of the gene in a "petite-positive" strain carrying a rho o-lethality suppressor atp mutation rendered cells unable to grow on a nonfermentable carbon source. However, in contrast to S. cerevisiae, disruption of MRP-L23 in wild type K. lactis is lethal. Meiotic segregants of K. lactis with a disrupted MRP-L23 allele form microcolonies with cell numbers varying from 32 to 300. These data clearly indicate an essential role of mitochondrial protein synthesis for viability of the petite-negative yeast K. lactis.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
