Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;47(3):290-300.
doi: 10.1109/10.827289.

Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine

Affiliations

Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine

D W Branch et al. IEEE Trans Biomed Eng. 2000 Mar.

Abstract

For neurons to attach and remain in precise micropatterns for weeks in culture, background molecules that remain nonpermissive for extended culture durations need to be identified. Nonpermissive background molecules of either polyethylene glycol (PEG) or the amino acid serine (C3H7NO3) were evaluated. The foreground regions were microstamped with 3-, 5-, or 10-micron lines of poly-D-lysine (PDL), which promotes neural attachment and growth. After 29 days in culture the foreground compliance, or the fraction of all live somata which rested on the desired PDL surface, averaged 86% for serine and 90% for PEG, with only a small decline. The background compliance, or the fraction of square areas in the pattern background which were free of neurite extension, declined from highs of 40% and 55% (midculture) to 5.5% and 12% (29 days) for serine and PEG, respectively. Images of the cultures suggest that PEG is significantly more effective as a nonpermissive substrate. We conclude that these materials, especially PEG, are adequate for the maintenance of long-term patterned cultures of neurons. We believe that this is the first report of high-quality long-term patterning of cultured neurons.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources