Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;14(5):652-60.
doi: 10.1096/fasebj.14.5.652.

Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line

Affiliations

Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line

A Biroccio et al. FASEB J. 2000 Apr.

Abstract

We have previously demonstrated that bcl-2 overexpression enhances the metastatic potential of the MCF7 ADR human breast cancer cell line resistant to adriamycin by inducing metastasis-associated properties. To further elucidate the relationship between bcl-2 expression and the metastatic potential of the MCF7 ADR line, we evaluated whether bcl-2 could be also involved in the modulation of the angiogenic phenotype. Four bcl-2-overexpressing clones, a control transfectant clone, and the MCF7 ADR parental line were used for in vitro and in vivo experiments. Bcl-2 overexpression enhanced the synthesis of the hypoxia-stimulated VEGF protein and mRNA. Northern blot analysis demonstrated an increased VEGF mRNA expression in bcl-2-overexpressing clones, and reverse transcription-polymerase chain reaction showed higher levels of the VEGF(121) and VEGF(165) mRNA isoforms, which are the most active in eliciting angiogenesis. When incorporated into matrigel, supernatants of bcl-2-transfected cells cultured under hypoxic conditions induced an increased angiogenic response in C57BL/6 mice compared with that of control clone. Tumors from bcl-2 transfectants demonstrated increased VEGF expression and neovascularization as compared to the parental line, whereas the apoptosis in in vivo xenografts was similar in control and bcl-2 transfectants. The effect of bcl-2 on angiogenesis was not mediated by p53 protein. These results demonstrate that bcl-2 and hypoxia can act synergistically to modulate VEGF expression and the in vivo angiogenic response in the MCF7 ADR line.

PubMed Disclaimer

Publication types

MeSH terms