Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 7;275(14):9919-23.
doi: 10.1074/jbc.275.14.9919.

Phosphorylation-dependent interaction between plant plasma membrane H(+)-ATPase and 14-3-3 proteins

Affiliations
Free article

Phosphorylation-dependent interaction between plant plasma membrane H(+)-ATPase and 14-3-3 proteins

L Camoni et al. J Biol Chem. .
Free article

Abstract

The H(+)-ATPase is a key enzyme for the establishment and maintenance of plasma membrane potential and energization of secondary active transport in the plant cell. The phytotoxin fusicoccin induces H(+)-ATPase activation by promoting the association of 14-3-3 proteins. It is still unclear whether 14-3-3 proteins can represent natural regulators of the proton pump, and factors regulating 14-3-3 binding to the H(+)-ATPase under physiological conditions are unknown as well. In the present study in vivo and in vitro evidence is provided that 14-3-3 proteins can associate with the H(+)-ATPase from maize roots also in a fusicoccin-independent manner and that the interaction depends on the phosphorylation status of the proton pump. Furthermore, results indicate that phosphorylation of H(+)-ATPase influences also the fusicoccin-dependent interaction of 14-3-3 proteins. Finally, a protein phosphatase 2A able to impair the interaction between H(+)-ATPase and 14-3-3 proteins was identified and partially purified from maize root.

PubMed Disclaimer

Publication types

LinkOut - more resources