Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis
- PMID: 10747168
- PMCID: PMC86524
- DOI: 10.1128/JCM.38.4.1676-1678.2000
Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis
Abstract
Identification of coryneform bacteria to the species level is important in certain circumstances for differentiating contamination and/or colonization from infection, which influences decisions regarding clinical intervention. However, methods currently used in clinical microbiology laboratories for the species identification of coryneform bacteria are often inadequate. We evaluated the MicroSeq 500 16S bacterial sequencing kit (Perkin-Elmer Biosystems, Foster City, Calif.), which is designed to sequence the first 527 bp of the 16S rRNA gene for bacterial identification, by using 52 coryneform gram-positive bacilli from clinical specimens isolated from January through June 1993 at the Mayo Clinic. Compared to conventional and supplemented phenotypic methods, MicroSeq provided concordant results for identification to the genus level for all isolates. At the species level, MicroSeq provided concordant results for 27 of 42 (64.3%) Corynebacterium isolates and 5 of 6 (83.3%) Corynebacterium-related isolates, respectively. Within the Corynebacterium genus, MicroSeq gave identical species-level identifications for the clinically significant Corynebacterium diphtheriae (4 of 4) and Corynebacterium jeikeium (8 of 8), but it identified only 50.0% (15 of 30) of other species (P < 0.01). Four isolates from the genera Arthrobacter, Brevibacterium, and Microbacterium, which could not be identified to the species level by conventional methods, were assigned a species-level identification by MicroSeq. The total elapsed time for running a MicroSeq identification was 15.5 to 18.5 h. These data demonstrate that the MicroSeq 500 16S bacterial sequencing kit provides a potentially powerful method for the definitive identification of clinical coryneform bacterium isolates.
References
-
- Enright M C, Carter P E, MacLean I A, McKenzie H. Phylogenetic relationships between some members of the genera Neisseria, Acinetobacter, Moraxella, and Kingella based on partial 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol. 1994;44:387–391. - PubMed
-
- Fox G E, Wisotzkey J D, Jurtshuk P., Jr How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992;42:166–170. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
