Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 26;275(21):16134-8.
doi: 10.1074/jbc.C901008199.

Involvement of calmodulin in 1alpha,25-dihydroxyvitamin D3 stimulation of store-operated Ca2+ influx in skeletal muscle cells

Affiliations
Free article

Involvement of calmodulin in 1alpha,25-dihydroxyvitamin D3 stimulation of store-operated Ca2+ influx in skeletal muscle cells

G Vazquez et al. J Biol Chem. .
Free article

Abstract

The steroid hormone 1alpha,25-dihydroxyvitamin D(3) (1, 25-(OH)(2)D(3)) rapidly modulates Ca(2+) homeostasis in avian skeletal muscle cells by driving a complex signal transduction mechanism, which promotes Ca(2+) release from inner stores and cation influx from the outside through both L-type and store-operated Ca(2+) (SOC) channels. In the present work, we evaluated the involvement of calmodulin (CAM) in 1,25-(OH)(2)D(3) regulation of SOC influx in chick skeletal muscle cells. Treatment with 10(-9) m 1,25-(OH)(2)D(3) in Ca(2+)-free medium resulted in a rapid but transient Ca(2+) rise correlated with the sterol-induced inositol 1,4,5-trisphosphate (IP(3)) production. The SOC influx stimulated by the hormone was insensitive to both CAM antagonists (fluphenazine, trifluoperazine, chlorpromazine, compound 48/80) and the CAM-dependent protein kinase II (CAMKII) inhibitor KN-62 when added after the sterol-dependent Ca(2+) transient, but it was completely abolished when added prior to the IP(3)-induced mobilization of Ca(2+) from endogenous stores. Moreover, in cells microinjected with antisense oligonucleotides directed against the CAM mRNA the sterol-stimulated SOC influx was reduced up to 60% respect to uninjected cells. The present results suggest that the 1, 25-(OH)(2)D(3)-induced (IP(3)-mediated) cytosolic Ca(2+) transient is required for CAM, activation which in turn activates SOC influx in a mechanism that seems to include CAMKII.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources