Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 2;275(22):16650-7.
doi: 10.1074/jbc.M000030200.

TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor

Affiliations
Free article

TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor

S Rajan et al. J Biol Chem. .
Free article

Abstract

Tandem pore domain acid-sensitive K(+) channel 3 (TASK-3) is a new member of the tandem pore domain potassium channel family. A cDNA encoding a 365- amino acid polypeptide with four putative transmembrane segments and two pore regions was isolated from guinea pig brain. An orthologous sequence was cloned from a human genomic library. Although TASK-3 is 62% identical to TASK-1, the cytosolic C-terminal sequence is only weakly conserved. Analysis of the gene structure identified an intron within the conserved GYG motif of the first pore region. Reverse transcriptase-polymerase chain reaction analysis showed strong expression in brain but very weak mRNA levels in other tissues. Cell-attached patch-clamp recordings of TASK-3 expressed in HEK293 cells showed that the single channel current-voltage relation was inwardly rectifying, and open probability increased markedly with depolarization. Removal of external divalent cations increased the mean single channel current measured at -100 mV from -2.3 to -5.8 pA. Expression of TASK-3 in Xenopus oocytes revealed an outwardly rectifying K(+) current that was strongly decreased in the presence of lower extracellular pH. Substitution of the histidine residue His-98 by asparagine or tyrosine abolished pH sensitivity. This histidine, which is located at the outer part of the pore adjacent to the selectivity filter, may be an essential component of the extracellular pH sensor.

PubMed Disclaimer

Publication types

Associated data